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Abstract
Using molecular dynamics (MD) and Monte Carlo (MC) simulations interfacial properties of
crystal–fluid interfaces are investigated for the hard sphere system and the one-component
metallic system Ni (the latter modeled by a potential of the embedded atom type). Different
local order parameters are considered to obtain order parameter profiles for systems where the
crystal phase is in coexistence with the fluid phase, separated by interfaces with (100)
orientation of the crystal. From these profiles, the mean-squared interfacial width w2 is
extracted as a function of system size. We rationalize the prediction of capillary wave theory
that w2 diverges logarithmically with the lateral size of the system. We show that one can
estimate the interfacial stiffness γ̃ from the interfacial broadening, obtaining γ̃ ≈ 0.5kBT/σ 2

for hard spheres and γ̃ ≈ 0.18 J m−2 for Ni.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A key issue towards the microscopic understanding of
crystallization from the melt is knowledge about the
properties of the equilibrium crystal–melt interface. Although
experimental techniques such as electron microscopy and
x-ray scattering give insight into the structure of solid–
liquid interfaces [1], at least for atomistic systems, interfacial
properties such as interfacial tensions or kinetic growth
coefficients are hardly accessible in experiments. In
principle, the situation is different for colloidal systems where
microscopy allows for the direct measurement of particle
trajectories and thus, similar to a computer simulation, any
quantity of interest can be computed from the positions of the
particles. Recently, several experimental studies [2–5] were
devoted to the study of solid–liquid interfaces in colloidal
suspensions using confocal microscopy. However, a direct
measurement of the anisotropic interfacial tension for a solid–
liquid interface has not been realized so far. Moreover, it is
an open question to what extent typical colloidal systems such
as hard spheres can serve as model systems for crystallization
processes on the atomistic scale, as they occur, e.g. in metallic
alloys.

Interfacial properties are also central parameters in the
continuum modeling of crystal growth; e.g. the widely used
phase field method needs the anisotropic interfacial tension as
input (for a recent review of the phase field approach see [6]).
The fact that interfacial tensions are in general not known
from experiments reduces the predictive power of the phase
field method. Recently, more microscopic approaches for the
description of crystallization processes have been proposed.
The phase field crystal (PFC) method [7] is a generalization
of phase field modeling to the atomistic scale. As shown by
van Teeffelen et al [8], the PFC method can be derived from
dynamic density functional theory (DDFT) [9, 10], the latter
providing an ‘ab initio approach’ to dynamic crystallization
and freezing phenomena. Thus, there is hope that both PFC
and DDFT will lead to some progress towards a microscopic
understanding of crystallization phenomena. We note also
that in the framework of static density functional theory,
thermodynamic properties of the crystal–melt interface such
as the interfacial tension can be predicted, at least for simple
model systems (e.g. hard spheres) [11].

For all the latter models, one has to keep in mind that
they introduce various severe approximations: in particular,
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since they are mean-field theories, statistical fluctuations are
neglected. Thus, capillary wave excitations [12] that strongly
affect the interfacial properties (e.g. a broadening of the mean-
squared interfacial width) are not taken into account.

Beyond mean-field theories, particle-based computer
simulations are an appropriate tool to study solid–liquid
interfaces at a microscopic level. In principle, molecular
dynamics (MD) as well as Monte Carlo (MC) simulations
provide a numerically exact treatment of the statistical
mechanics, only based on a model potential that describes
the interactions between the particles. However, when
one examines the details of the solid–liquid interface at
phase coexistence via such simulation techniques, one must
be aware of various problems: a slight deviation from
the correct coexistence condition, details of the averaging
procedure, insufficient sampling of statistical fluctuations, or
an inappropriate choice of the order parameter may cause
more or less drastic deviations from the correct result. These
problems have hampered progress in the area. On the one
hand, new and presumably rather accurate methods for the
analysis of solid–liquid interfaces have been presented for
hard spheres [13, 14], Lennard-Jones systems [15], models of
metallic systems [16–19], and silicon [20]. On the other hand,
in none of these studies has it been systematically analyzed
how finite-size effects influence the properties of solid–liquid
interfaces. In the present work, we do the first steps to
fill this gap and we demonstrate that, in the framework of
capillary wave theory, the interfacial stiffness can be estimated
from an analysis of finite-size effects. A comparative study
is performed of the structure of solid–liquid interfaces of
hard spheres and a model of Ni. In this manner, we shed
light on differences between both kinds of systems and thus,
we contribute to the question whether a typical colloidal
system (hard spheres) can serve as a model for a typical
metallic system (Ni) with respect to the interfacial properties
at coexistence. Furthermore, by using both MC and MD
simulations we rationalize that both methods can be applied
to the interfacial analysis.

The outline of the paper is as follows. In section 2, we
introduce the models used for the simulations and summarize
the simulation methodology. In section 3 we give a brief
overview over the results of capillary wave theory that we
use to determine the interfacial stiffness. Then, in section 4
we present the results for the fluid structure, the local order
parameter profiles and the system size dependence of the
mean-squared interfacial width from which we estimate the
interfacial stiffness. Finally, we summarize the results.

2. Models and simulation techniques

In this section, we introduce briefly the main details of the
MC simulations for the hard sphere system and the MD
simulations for Ni. Moreover, for both cases we describe how
we have prepared configurations in a slab geometry where
the crystal phase in the middle of an elongated (rectangular)
simulation box is at coexistence with the fluid phase, separated
by two interfaces (parallel to the xy-plane) and using periodic
boundary conditions in all three spatial directions.

2.1. Monte Carlo simulation of hard spheres

The hard sphere system is defined via the potential

u(r) =
{

∞ r < σ

0 r � σ ,
(1)

with r the distance between two particles and σ the diameter of
a particle. Throughout the paper all length scales are measured
in units of σ for the hard sphere system.

Since for any allowed hard sphere configuration, the total
potential energy is zero, temperature T is only a scaling
factor and the thermodynamic properties are fully controlled
by the packing density η = πσ 3

6
N
V (or, when the total

volume V of the system is a fluctuating variable, by the
pressure P). As a consequence, the phase behavior of hard
sphere systems is completely driven by entropy [21]. As first
claimed by Kirkwood [22], hard spheres exhibit a fluid-to-
solid transition. However, Kirkwood’s prediction was based
on misleading arguments and so it was a surprising discovery
when the freezing of hard spheres was first observed in early
computer simulations [23, 24]. Since the phase behavior of
hard spheres depends only on packing density η, the phase
diagram is particularly simple. Due to the absence of attractive
interactions, the hard sphere model (1) does not exhibit a
liquid–vapor transition. Fluid and fcc crystal coexist between
the freezing point ηf = 0.494 and the melting point ηm =
0.545, while the pure crystal is the stable phase for η >

ηm [25, 27].
The MC simulations were carried out in the isothermal–

isobaric (N PT ) and (N Pz T ) ensemble, in which the pressure
P , the temperature T and the number of particles N are
constant (in the N Pz T ensemble, Pz is the diagonal component
of the pressure tensor perpendicular to the xy plane). An
MC code was developed applying the standard Metropolis
algorithm [26–28]. The trial moves are particle displacements,
where it was attempted to displace each particle once per MC
cycle, and the system’s volume rescaling was executed once
per MC cycle. The maximum displacement is chosen to keep
the acceptance rate at 30% for the particles and 10% for the
volume.

In test runs, we have reproduced the solid and liquid
branches of the equation of state and have found full
agreement with analytical results [29, 30]. Additionally, the
radial distribution function and the static structure factor for
the bulk liquid has been compared to the Percus–Yevick
approximation [31]. The coexistence pressure was found by
the interface velocity analysis similar to [19]. At coexistence
the total volume of the melt–crystal system is constant, since
the melt is in equilibrium with the crystal, therefore the
interface velocity is vI = 0. Hence, a series of runs was
performed in a wide range of pressures. At each simulation,
the interface velocity vI was estimated from the slope dV/dt
of the temporal change of the system volume V (t) in the
stationary growth interval. Following this procedure, first,
we have estimated the rough location of the coexistence
pressure and then by increasing the resolution of the pressure
interval we improved the initial accuracy. The final result
yielded pc = 11.58 ± 0.04kBT/σ 3, very close to the
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literature value pc = 11.567kBT/σ 3 [27]. Similar values
(pc = 11.54, 11.5, 11.53, 11.55kBT/σ 3) have been reported
in [13, 32–34] accordingly. The average densities were found
to be ρs = 1.04 for the solid and ρl = 0.9385 for the liquid,
close to the results of Hoover and Ree [25] (ρs = 1.04 for solid
and ρl = 0.939). The bulk interplanar distance between lattice
planes in the crystalline phase is ∼0.784σ . Further details are
discussed elsewhere [35].

To generate crystal–melt interfaces at coexistence, we first
prepared solid–liquid ‘sandwiches’ where the (100) direction
of the fcc phase is oriented perpendicular to the z-axis. In this
study, we considered the system sizes of side length L = na
lattice spacings with n = 5, 6, 7, 8, 10 (where a = 1.567 σ

at coexistence). The total number of particles is N = 2500,
4320, 6860, 10 240, 14 580, and 20 000, respectively. We have
verified that the elongation Lz = 5L along the z direction
is sufficient to avoid interactions between the interfaces due
to periodic boundary conditions. For smaller elongations in
the z direction we see significant finite-size effects in density
profiles due to the interaction of the two interfaces via periodic
boundary conditions.

As a first step, a solid slab of size (L×L×3L) and a liquid
box of size (L × L × 2L) were equilibrated separately for 106

MC cycles in the N PT ensemble at pc. Here, L corresponds
to the bulk solid density ρs at coexistence. For the liquid, the
same values of L were used in the x and y directions. Then,
the correct bulk density of the liquid was achieved by using
simulations in the N Pz T ensemble. Next, the two parts were
placed together in a simulation box of size Lx × L y × Lz with
Lx = L y = L.

The most delicate point of the preparation is how to match
the solid and fluid parts. The initial configuration might be
refused if the melt and the crystal are too close, otherwise a
large gap between them would cause lower fluid density and
artifacts with respect to interface properties. Therefore, new
fluid–solid configurations were relaxed in N Pz T simulations
until the coexistence densities were recovered in the bulk
regions. The first 105 MC cycles, the lateral sizes, and
the positions of the solid particles were fixed in order to
avoid internal stresses in the solid. Furthermore, for each
system size we have performed isochoric runs of 2 × 105

MC cycles, initially rescaling the length of the box Lz to
the average value 〈Lz〉, as computed in the last 5 × 104

MC cycles of previous N Pz T runs. Next, we have selected
50 independent configurations for sizes n = 5, 6, 7, 8 and
10 independent configurations for n = 10 to compute the
equilibrium properties of the interfaces over 5 × 104 MC
cycles in the isochoric ensemble. The statistics were collected
every 20 MC cycles. The length of the final runs was chosen
to prevent the diffusive motion of the interface; however, in
several configurations an additional interface broadening was
detected due to the displacement of the solid–liquid interface.
Those runs were replaced by additional runs.

2.2. Molecular dynamics simulation of Ni

For Ni, a similar methodology as for the hard sphere system
has been employed. But MD simulations instead of MC

simulations were performed. As a potential to model the
interactions between the particles in Ni we used a potential of
the embedded atom type, as proposed by Foiles [36]. We show
elsewhere [37] that this model potential reproduces very well
various thermodynamic and transport properties, as obtained
from experiments of liquid Ni.

As before for the hard sphere system, an inhomogeneous
solid–liquid system is simulated in a sandwich geometry with
L × L × Lz being the size of the simulation box. Again,
Lz = 5L is chosen. In the following, L will be also expressed
in terms of the number of lattice planes of the fcc crystal, n, as
L = na (note that the lattice constant is given by a = 3.58 Å
at the melting temperature Tm).

Newton’s equations of motion are integrated with the
velocity form of the Verlet algorithm [38], using a time step
of 1 fs. The melting temperature of the model is again
estimated from an interface velocity analysis, considering an
inhomogeneous solid–liquid system in the N PT ensemble.
The melting temperature is obtained from the linear fit of the
interface velocity versus temperature up to an undercooling of
about 40 K. From these simulations [37], we have found the
melting temperature Tm = 1748 K, which is in good agreement
with the experimental value, Tm = 1726 K [39]. Simulations
of different system sizes indicate that finite-size effects are
weak [37], as far as the determination of Tm is concerned. For
the Ni model used in this work, the melting temperature of the
smallest system with N = 2500 particles was 0.5% higher than
the estimated melting temperature in the thermodynamic limit,
Tm = 1748 K.

To prepare an inhomogeneous system with two crystal–
liquid interfaces at Tm, the following steps are involved:
first, atoms, disposed on a fcc lattice, are relaxed in a
N PT simulation for about 30 ps at Tm and zero pressure.
Temperature was kept constant by coupling the system to a
stochastic heat bath, i.e. by reassigning every 200 steps new
velocities to each particle according to a Maxwell–Boltzmann
distribution. To keep the pressure constant, an algorithm
proposed by Andersen was used, setting the mass of the piston
to 100 eV ps2 Å

−2
[40]. In the next step, a liquid and a crystal

region are defined in the system such that the crystal region in
the middle of the elongated simulation box occupies a volume
of L3. Atoms in the crystal region remain at fixed positions
while the rest of the system is heated up to 2400 K which
is well above the melting point. At this step, only volume
changes with respect to the expansion and compression of the
box in the direction perpendicular to the liquid–solid interface
are applied, i.e. the simulation is done in the N Pz T ensemble.
In order to completely melt the liquid regions, the simulation
runs over about 100 ps. Then, the temperature of the melt
is set back to the initial temperature at which the crystal was
prepared. A run over 50 ps in the N Pz T ensemble is added
where all the particles are allowed to move. From the last 10 ps
of this run the average length of the box in the z direction, 〈Lz〉,
is determined. After the length of the simulation box in the z
direction is rescaled to 〈Lz〉, the simulation continues with a
run over 20 ps in the NV T ensemble. From the last 10 ps of
this run, the average total energy of the system is computed.
The system is set to this energy by rescaling the velocities of
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the particles appropriately. Finally, microcanonical production
runs over 1 ns are done from which the information about the
interfacial properties are obtained. We considered systems of
lateral size L = na with n = 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, and 15. The total number of particles in these systems is
N = 2500, 4320, 6860, 10 240, 14 580, 20 000, 26 620, 34 560,
43 940, 54 880, and 67 500, respectively. For each system size,
five independent runs were performed.

3. Capillary fluctuations

In this work, we consider systems where a crystal phase is
at coexistence with a fluid phase and the two phases are
separated from each other by interfaces (two interfaces are
formed due to periodic boundary conditions). As a matter
of fact, the presence of the interfaces breaks the translational
invariance, which is a continuous symmetry property of the
underlying Hamiltonian. The latter leads to the occurrence of
Goldstone excitations: long-wavelength transverse excitations,
known as capillary waves, appear that are thermally driven
undulations of the interface. At infinite wavelength (i.e. in
the limit of wavenumber q → 0), they describe an overall
translational motion of the interface with zero energy cost. In
the framework of mean-field approaches such as phase field
modeling, capillary wave excitations are neglected, although
they strongly affect the interfacial properties.

This can be seen in the framework of capillary wave theory
(CWT) [12]. This theory describes the free energy cost �F
of long-wavelength undulations of an interface. For three-
dimensional systems, CWT predicts a logarithmic divergence
of the mean-squared width, w2, of the interface with the lateral
system size L. As we see below, in a computer simulation,
this result of CWT can be used as a method to determine
the interfacial tension by measuring the mean-squared width
w2 for different system sizes. Whereas this method has
been successfully applied to the Ising model [41–43], polymer
mixtures [44–46], and liquid–vapor interfaces in the Asakura–
Oosawa model for colloid–polymer mixtures [47, 48], it has
not been used as a method to estimate the interfacial tension of
crystal–fluid interfaces. In the latter case, many of the recent
simulation studies on hard spheres (e.g. [13]), and metallic
systems (e.g. [17]) have used an analysis of the capillary wave
spectrum to determine the interfacial tension. However, here,
we demonstrate that also in the case of solid–liquid interfaces
the interfacial stiffness can be computed by measuring w2 as a
function of ln L. Both for polymer mixtures [44, 45] and the
liquid–vapor transition of the Asakura–Oosawa model [48], it
has been shown that the analysis of the capillary wave spectrum
and the finite-size analysis of the interfacial broadening yield
values for the interfacial tension that are in agreement.

As before, we consider atomically rough crystal–fluid
interfaces. We parametrize the local fluctuations of the
interface by a function h(x, y) that denotes the local deviation
of the interface position z0(x, y) from the mean value
h(x, y) = z0(x, y) − 〈z0(x, y)〉 (here, z is the Cartesian
component perpendicular to the interface, x , y the ones parallel
to it). h( �ρ) ≡ h(x, y) can be expressed in Fourier coordinates,
h( �ρ) = ∑

�q h(�q) exp(i�q · �ρ) (with the wavevector �q =

(qx, qy)). Then, the total free energy of the interface can be
expressed in reciprocal space as

�F = L2γ̃

2

∑
�q

q2|h �q |2. (2)

Here, L2 is the area of the flat interface. γ̃ is the interfacial
stiffness, defined by γ̃ = γ + d2γ /dθ2 with γ the interfacial
tension and θ the angle between the interface normal and the
(100) direction. The interfacial stiffness takes into account the
anisotropy of the interfacial tension in the case of a crystal–
fluid interface; of course, in the case of a liquid–vapor interface
γ̃ would be replaced by γ in equation (2).

Since the different q modes in equation (2) are decoupled,
it follows from the equipartition theorem that each mode
carries an energy of kBT and thus one obtains

〈|h �q |2〉 = kBT

L2γ̃ q2
. (3)

This expression can be used to determine γ̃ by measuring the
slope of the straight line that fits 1/〈|h �q |2〉 plotted as a function
of q2. In fact, this has been done in recent simulation studies of
hard spheres [56] and metallic systems [17]. However, in the
latter works, a geometry with L y 
 Lx was chosen such that
only the fluctuations of a quasi-one-dimensional ‘ribbon-like’
interface are considered. Although this simplifies the analysis
it also alters the nature of the capillary fluctuations (see below).
In this work, we consider therefore only a geometry with
L = Lx = L y .

Equation (3) can be used to determine the mean-squared
interfacial width w2, given by

w2
cw = 〈|h �ρ |2〉 =

∑
�q

〈|h �q |2〉 = L2

(2π)2

∫
d�q〈|h �q |2〉, (4)

which yields

w2
cw = kBT

2πγ̃

∫ 2π/	

2π/L

dq

q
= kBT

2πγ̃
ln(L/	). (5)

In equation (5), 	 is a cut-off length that is introduced
in accordance with the assumption that only modes with a
wavelength larger than the typical width of the interface are
taken into account. Note that with the aforementioned quasi-
one-dimensional ribbon-like interface the mean-squared width
would increase linearly with L.

In mean-field theory the interface between coexisting
phases is assumed to be flat and the interfacial profile φ(z) is
described by a hyperbolic tangent,

φ(z) = A + B tanh

(
z − z0

w0

)
(6)

where A and B are parameters related to the bulk values of the
densities or order parameters, z0 and w0 are the position of the
interface and its width, respectively.

Now, the idea is to combine the mean-field result with that
of CWT by considering w0 as the width of an intrinsic profile
that is superposed by fluctuations described by w2

cw. The
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Figure 1. Static structure factor S(q) of the hard sphere system and
the Ni melt at coexistence, i.e. at the volume packing fraction
η = 0.492 for the hard spheres and at the temperature T = 1748 K
for Ni.

total width of the profile is then obtained from a convolution
approximation [49],

w2 = w2
0 + π

2
w2

cw = w2
0 + kBT

4γ̃
ln L − kBT

4γ̃
ln 	. (7)

When using this equation as a fit formula to analyze profiles as
measured in the simulation, it is impossible to disentangle the
intrinsic width contribution w2

0 from the ‘cut-off’ contribution
− kBT

4γ̃
ln 	. This issue has been discussed in detail for the case

of polymer mixtures [44–46, 50, 51].
The main issue in the following is to investigate whether

equation (7) can be used to measure the interfacial stiffness
in a computer simulation. To this end, fits with equation (6)
to order parameter profiles are used to obtain an effective
interface width for different lateral system sizes L. This will
be described in section 4.

4. Results

4.1. Static structure factor: hard sphere fluid versus Ni melt

In order to study the structural differences between the bulk
hard sphere fluid and the bulk Ni melt at coexistence, figure 1
displays the static structure factor [31] for both systems,

S(q) = 1

N

〈∣∣∣ N∑
k=1

exp[i�q · �rk]
∣∣∣2

〉
(8)

with �rk the position of particle k and �q the three-dimensional
wavevector (different from the two-dimensional wavevectors
that we have considered in section 3). To provide a better
comparison between the structure factors for the two systems,
we have multiplied the wavenumber q in figure 1 by σ ′ = σ

for the hard sphere system and σ ′ = 2.24 Å for Ni (which is
similar to the nearest neighbor distance, rNiNi = 2.42 Å [37]).

Mainly two differences between the two systems can be
inferred from figure 1. Towards q → 0 the structure factor for
Ni has a much lower amplitude, indicating that, at coexistence
the Ni melt has a lower compressibility than the hard sphere
system. Moreover, the amplitude of the first peak in S(q) for Ni
is slightly larger. But the overall shape of S(q) is surprisingly
similar for both systems which shows that the hard sphere
system’s structure is very similar to that of Ni.

4.2. The structure of the solid–fluid interfaces

A simple quantity to characterize the structure of the interface
is provided by the density profile ρ(z) across the interface. To
compute ρ(z), the system is divided into slices of thickness �z
and then, in each slice, one counts the number of particles and
divides by the volume of the slice L2�z. The displacement of
the lattice planes along the z-axis during the time evolution was
corrected for each configuration. As for the order parameter
profiles shown below, we have averaged the density profiles
over the two interfaces in each system that are present due to
periodic boundary conditions.

Figure 2 shows density profiles for the hard sphere
system and Ni, in each case for two system sizes. The
shape of the profiles is typical for inhomogeneous systems
with crystal–fluid interfaces. In fact, very similar density
profiles have been found for various systems with solid–liquid
interfaces [13, 15, 16, 19, 20]. Whereas one observes huge
oscillations in the crystalline region due to the presence of
crystalline layers, in the fluid region ρ(z) is constant. In
between, i.e. in the interface region, the amplitude of the peaks
decreases. Obviously, the size effects are very small for both
considered systems. However, for the big systems the height
of the peaks is slightly larger in the interface region. We note
that although the density profiles have a very different shape in
the solid and the liquid regions, both for the HS system and for
Ni the differences in the average densities of the solid and the
liquid phase are rather small. In the HS case, the solid density
is about 10% higher (ρs = 1.04, ρl = 0.9385) and for Ni, it
is about 5% higher (ρs = 8.357 g cm−3, ρl = 7.928 g cm−3).
Due to this small difference between ρl and ρs the density is
not a good order parameter for the investigation of interfacial
properties such as the interfacial width.

Another possibility to characterize the structure of
interfaces is provided by profiles of local order parameters.
Steinhardt et al [52] have proposed rotational-invariant order
parameters in terms of expansions into spherical harmonics
Ylm ,

Ql(i) =
(

4π

2l + 1

l∑
m=−l

|Q̄lm |2
)1/2

(9)

with

Q̄lm(i) = 1

Zi

Zi∑
j=1

Ylm(θ(�ri j), φ(�ri j )), (10)

where �ri j is the distance vector between a pair of neighboring
particles i and j , Zi is the number of neighbors within a given
cut-off radius, and θ(�ri j ) and φ(�ri j ) are the polar bond angles
with respect to an arbitrary reference frame.
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Figure 2. Density profiles for (a) hard spheres and (b) Ni. In each case, the profiles are shown for two different system sizes.

Similar local order parameters have been introduced by
ten Wolde et al [53], defined by

qlql(i) = 1

Zi

Zi∑
j=1

ql(i) · ql( j). (11)

The internal product in this sum is given by

ql(i) · ql( j) =
l∑

m=−l

q̃lm(i)q̃lm( j)∗ (12)

with

q̃lm(i) = Q̄lm(i)(∑l
m=−l |Q̄lm(i)|2)1/2 . (13)

In the following, we use the parameter q6q6 that is defined
by equations (11)–(13), setting l = 6.

Another local order parameter used in this work was
introduced by Morris [54]

�(i) =
∣∣∣ 1

Nq

1

Zi

Zi∑
j=1

Nq∑
k=1

exp(i�qk · �ri j)

∣∣∣2
(14)

where the wavevectors �qk are chosen such that in a perfect
crystal

| exp(i�qk · �ri j)| = 1. (15)

Again, �ri j is the distance vector between neighboring particles.
With respect to the basis vectors of the fcc lattice with lattice
constant a, �a1 = a/2(1, 1, 0), �a2 = a/2(0, 1, 1), and
�a3 = a/2(1, 0, 1), an appropriate choice of wavevectors is
�b1 = 2π/a(−1, 1,−1), �b2 = 2π/a(1,−1, 1), and �b3 =
2π/a(1, 1,−1). An additional average of �(i) over a particle
with index i and its neighboring particles yields

�̄(i) = 1

Zi + 1

(
�(i) +

Zi∑
j=1

�( j)

)
. (16)

The parameter �̄ together with q6q6 is used in the following to
distinguish solid particles from fluid particles and to identify
the interfacial regions. To select the nearest neighbors
we introduced the cut-off radii that correspond to the first

minimum of the radial distribution function of the bulk liquid
phase at coexistence.

Figure 3 displays local order parameter distributions for
the pure liquid and the pure solid phases. The distributions
indicate that the considered order parameters are well suited
to distinguish liquid from solid particles. For the calculation
of the local order parameters, we used time-averaged particle
positions. To this end, for the hard sphere system, positions
were averaged over 50 MC cycles. For Ni, the phonon’s
degrees of freedom lead to a significant shift of the order
parameter distributions. Using a time interval of 0.1 ps for
the averaging of the particle positions in Ni, compared to an
ideal fcc crystal the order parameter distributions for the crystal
phase are broader and tend to shift to smaller values of the
order parameter (see figure 3). For a time average over 1 ps the
order parameter distributions are very similar to those for the
hard spheres. However, since in Ni at Tm a timescale of 1 ps is
already close to the timescale of particle diffusion in the melt,
we have used a time averaging over 0.1 ps for the analysis of
the interfacial properties that are presented in the following.

In figures 4 and 5, profiles of the local order parameters
are shown, i.e. the sum of the order parameter of the particles
contained within a slice transversal to the solid–liquid interface
divided by the volume of the slice �V = L2�z. The profiles
are calculated with a resolution (bin size) of 0.02 σ for the
hard spheres and 0.1 Å for Ni. The order parameter profiles
show similar features to the density profiles. However, finite-
size effects seem to be revealed in a more pronounced manner.
Clearly, the height of the peaks in the interface region slightly
increases with increasing system size.

To compute coarse-grained profiles we identify the
minima in the fine-grid profiles of figures 4 and 5. These
minima define the borders of nonuniform bins that match the
crystalline layers. Then, we compute the average value of the
order parameter in each of the latter bins. Examples for the
resulting coarse-grained order parameter profiles for the case of
q6q6 are displayed in figure 6. Here, the solid lines are fits with
a hyperbolic tangent function, φ(z) = A − B tanh[(z − z0)/w]
(where A and B are parameters related to the bulk values of the
order parameter, and z0 and w are the interface position and its
effective width, respectively). Both for the hard spheres and
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Figure 3. Probability distributions of the order parameter in Ni (broken lines) and the hard sphere system (solid lines) for the liquid and the
fcc phase, as indicated; (a) q6q6, (b) �̄ . Different time intervals for obtaining the average particle positions are considered for Ni; thereby, the
dashed lines correspond to an interval of 0.1 ps and the dotted lines to 1 ps (the latter case is referred to as Ni∗).

Figure 4. Profile for the order parameter q6q6, (a) for hard spheres and (b) for Ni. The insets provide a magnification of the interface region.

Figure 5. Profile for the order parameter �̄r , (a) for hard spheres and (b) for Ni. The insets provide a magnification of the interface region.

Ni, the latter fits indicate that the width w is larger for the big
systems, as expected from CWT.

4.3. Estimate of the interfacial stiffness

In figure 7, the mean-squared width w2, as obtained from the
fits to the coarse-grained profiles for q6q6 and �̄, is plotted as
a function of ln L. The plot confirms the logarithmic increase
of w2 with the lateral system size, as predicted by CWT.

From the fits with equation (7), we estimate for the (100)
orientation γ̃ = 0.50±0.05kBT/σ 2 for the hard sphere system
and γ̃ = 0.18±0.01 J m−2 for Ni. These values roughly agree
with previous estimates, obtained by other methods. For hard
spheres, Davidchack and Laird [14] found γ̃ = 0.57kBT/σ 2

using a thermodynamic integration approach, while Mu et al
[55] obtained γ̃  0.62kBT/σ 2 from the analysis of the
capillary wave spectrum. However, Davidchack et al [56]
later criticized their result as being biased and rather suggested

7



J. Phys.: Condens. Matter 21 (2009) 464102 T Zykova-Timan et al

 

 

Figure 6. Coarse-grained order parameter profile for q6q6 at the indicated system sizes, (a) for hard spheres and (b) for Ni. The solid and
dashed lines are fits to a hyperbolic tangent function (equation (6)), see the text.

Figure 7. Mean-squared width w2 as a function of ln L , (a) for hard spheres and (b) for Ni. The values for γ̃ are obtained from the fits (solid
lines).

γ̃ = 0.56 ± 0.02kBT/σ 2 when averaged over all interface
orientations. For the (100) orientation, they suggest γ̃ 
0.44 ± 0.03kBT/σ 2. However, their actual data reveal huge
fluctuations, and the judgment of the actual accuracy may need
reanalysis. For Ni, Hoyt et al [17] determined the interfacial
stiffness for the (100) orientation (and other orientations of the
Ni fcc phase). Using a different embedded atom model and
the analysis of the capillary wave spectrum to measure γ̃ , they
obtained γ̃ ≈ 0.23 J m−2, which is slightly larger than our
result.

5. Summary and outlook

In this paper, we have presented a comparative study of
melt–crystal interfaces for hard spheres and an embedded
atom model for nickel. These rather diverse systems have
been studied in analogous geometries, namely L × L ×
Lz rectangular simulation boxes with periodic boundary
conditions, at conditions where a crystalline slab, separated by
two L × L interfaces oriented perpendicular to the z-direction,
coexists with the fluid phase. The motivation for this study was
to provide a better understanding of the information that one
can extract from the simulation study of such interfaces, paying

particular attention to finite-size effects, and to limitations
of the accuracy which are inherently due to the simulation
setup. In fact, due to the translational invariance of the
simulation geometry as a whole, the center of mass of the
crystalline part is not fixed in space, but may fluctuate and
diffuse along the z-axis. In addition, at phase coexistence
in a finite box, fluctuations may occur when the size of the
crystal (volume fraction of the box that is crystallized) changes.
As a consequence, in each configuration that is analyzed one
must locate the precise position along the z-axis where the
lattice planes are (this was done via a fine-grid coarse graining)
and then the time averages are found in such a way that the
positions of lattice planes and interface centers coincide. It
is clear that this is a delicate procedure and hence there is
the need to watch out for possible systematic errors, which
are not necessarily equally important for different kinds of
systems, and for different simulation methods (e.g. MC and
MD). In view of these caveats, it is gratifying to state that
with the methods described in this paper, these problems
seem reasonably well under control. Indeed, we find that
the main difficulty in the interpretation of our results for
the interfacial profiles and their width is the broadening by
the capillary waves. This phenomenon, though well known
for vapor–liquid interfaces, has found comparatively little
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attention for the melt–crystal interface. Our results imply
that the capillary wave broadening (for rough, non-faceted
crystal surfaces) is present and important: while it makes a
naive direct comparison with DFT calculations of interfacial
profiles obsolete, it yields a relatively straightforward method
for extracting the interfacial stiffness and the accuracy of this
method seems to be competitive to other approaches.

As a next step we plan a detailed comparison with the
alternative method where the Fourier spectrum of interfacial
fluctuations is analyzed. For vapor–liquid type systems, such
comparisons can be found in the literature, but for the melt–
crystal interface a comprehensive comparative assessment of
different methods still is lacking. Of course, for applications
in crystal nucleation and growth phenomena very accurate
estimates for the interfacial stiffness are indispensable.
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79 051404
[9] Archer A J and Evans R 2004 J. Chem. Phys. 121 4246

[10] van Teeffelen S, Likos C N and Löwen H 2008 Phys. Rev. Lett.
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